
Proof Systems and SNARKs

Benedikt Bünz, Stanford

Managing assets on a blockchain: key principles

• Universal verifiability of blockchain rules
⇒ all data written to the blockchain is public; everyone can verify
⇒ added benefit: interoperability between chains

• Assets are controlled by signature keys
⇒ assets cannot be transferred without a valid signature

(of course, users can choose to custody their keys)

Privacy?

Naïve reasoning:
universal verifiability ⇒ blockchain data is public

⇒ all transactions data is public
otherwise, how we can verify Tx?

not quite …

crypto magic ⇒ private Tx on a publicly verifiable blockchain

Public blockchain & universal verifiability

• Tx data: encrypted (or committed)

• Proof 𝝅: zero-knowledge proof that
(1) plaintext Tx data is consistent with plaintext current state
(2) plaintext new state is correct

public blockchain
current

state
encrypted

(or committed)

Tx 𝜋 new state

encrypted
(or committed)

(reveals nothing about Tx data)

(abstractly)

Public blockchain & universal verifiability

• Tx data: encrypted (or committed)

• Proof 𝝅: zero-knowledge proof that
(1) plaintext Tx data is consistent with plaintext current state
(2) plaintext new state is correct

public blockchain
current

state
encrypted

(or committed)

Tx 𝜋 new state

encrypted
(or committed)anyone can

verify 𝝅

(reveals nothing about Tx data)

(abstractly)

Zero Knowledge Proof Systems

(1) arithmetic circuits
• Fix a finite field 𝔽 = 0,… , 𝑝 − 1 for some prime p>2.

• Arithmetic circuit: 𝐶: 𝔽𝑛 ⇾ 𝔽
• directed acyclic graph (DAG) where

• internal nodes are labeled +, −, or ×
• inputs are labeled 1, 𝑥1, … , 𝑥𝑛

• defines an n-variate polynomial
with an evaluation recipe

• |𝐶| = # multiplication gates in 𝐶
𝑥1 𝑥2 1

+ −

×

𝑥1(𝑥1+ 𝑥2+ 1)(𝑥2− 1)

Boolean circuits as arithmetic circuits
Boolean circuits: circuits with AND, OR, NOT gates

Encoding a boolean circuit as an arithmetic circuit over 𝔽𝑝 :
• AND(𝑥, 𝑦) encoded as 𝑥 ⋅ 𝑦
• OR(𝑥, 𝑦) encoded as 𝑥 + 𝑦 − 𝑥 ⋅ 𝑦
• NOT(𝑥) encoded as 1 − 𝑥

𝑥 𝑦 OR(𝑥, 𝑦)
0 0 0
0 1 1
1 0 1
1 1 1

𝑥1

𝑥2

𝑁𝑂𝑇

𝐴𝑁𝐷
𝑂𝑅

𝑥1

𝑥2

1 − 𝑥1

𝑥1 ⋅ 𝑥2

𝑦

𝑧
y + 𝑧 − 𝑧𝑦

Interesting arithmetic circuits

• Chash(h, m): outputs 0 if SHA256(m) = h , and ≠0 otherwise

Chash(h, m) = (h – SHA256(m)) , | Chash| ≈ 20K gates

• Csig((pk, m), σ): output 0 if σ is
a valid ECDSA signature of m under pk

(2) non-interactive proof systems (for NP)

Public arithmetic circuit: 𝐶(𝒙, 𝒘) ⇾ 𝔽𝑝
public statement in 𝔽)* secret witness in 𝔽)+

Let 𝒙 ∈ 𝔽)* . Two standard goals for prover P:

(1) Soundness: convince Verifier that ∃𝒘 s.t. 𝐶(𝒙,𝒘) = 0
(e.g., ∃𝒘 such that [𝐻(𝒘) = 𝒙 and 0 < 𝒘 < 260])

(2) Knowledge: convince Verifier that P “knows” 𝒘 s.t. 𝐶(𝒙,𝒘) = 0
(e.g., P knows a 𝒘 such that 𝐻(𝒘) = 𝒙)

The trivial proof system

Why can’t prover simply send 𝒘 to verifier?
• Verifier checks if 𝐶(𝒙,𝒘) = 0 and accepts if so.

Problems with this:
(1) 𝒘 might be secret: prover cannot reveal 𝒘 to verifier

(2) 𝒘 might be long: we want a “short” proof

(3) computing 𝐶(𝒙,𝒘)may be hard: want to minimize Verifier’s work

Non-interactive Proof Systems (for NP)

Public arithmetic circuit: 𝐶(𝒙, 𝒘) ⇾ 𝔽𝑝
public input in 𝔽)* secret witness in 𝔽)+

setup: S(𝐶) ⇾ public parameters (Sp, Sv)

Prover P(Sp, 𝒙,𝒘) Verifier V(Sv, 𝒙, 𝝅)
proof 𝜋

output accept or reject

Non-interactive Proof Systems (for NP)

A non-interactive proof system is a triple (S, P, V):

• S(𝐶) ⇾ public parameters (Sp, Sv) for prover and verifier

• P(Sp, 𝒙,𝒘) ⇾ proof 𝜋

• V(Sv, 𝒙, 𝝅) ⇾ accept or reject

proof systems: properties (informal)
Prover P(pp, 𝒙,𝒘) Verifier V (pp, 𝒙, 𝝅)

proof 𝜋
accept or reject

Complete: ∀𝑥,𝑤: 𝐶(𝒙,𝒘) = 0 ⇒ V(Sv, 𝑥, P(Sp, 𝒙, 𝒘)) =
accept

Proof of knowledge: V accepts ⇒ P “knows” 𝒘 s.t. 𝐶 𝒙,𝒘 =
0

Zero knowledge (optional): (𝒙, 𝜋) “reveals nothing” about 𝒘

(b) Zero knowledge
(S, P, V) is zero knowledge if proof π “reveals nothing” about 𝒘

Formally: (S, P, V) is zero knowledge for a circuit 𝐶
if there is an efficient simulator Sim,
such that for all 𝑥 ∈ 𝔽)* s.t. ∃𝑤: 𝐶 𝑥,𝑤 = 0 the distribution:

(Sp, Sv, 𝑥, 𝜋) where (Sp, Sv) ⇽ S(𝐶) , 𝜋 ⇽ P(𝑥, 𝒘)

is indistinguishable from the distribution:

(Sp, Sv, 𝑥, 𝜋) where (Sp, Sv, 𝜋) ⇽ Sim(𝑥)

key point: Sim(x) simulates proof 𝜋 without knowledge of 𝒘

(3) Succinct arguments: SNARKs

Succinct:

• Proof 𝜋 should be short [i.e., |𝜋| = 𝑂(𝐥𝐨𝐠 𝑪 , 𝜆)]

• Verifying 𝜋 should be fast [i.e., time(V) = 𝑂(𝑥 , 𝐥𝐨𝐠 𝑪 , 𝜆)]

note: if SNARK is zero-knowledge, then called a zkSNARK

Goal: P wants to show that it knows 𝒘 s.t. 𝐶(𝒙,𝒘) = 0

(3) Succinct arguments: SNARKs

Succinct:

• Proof 𝜋 should be short [i.e., |𝜋| = 𝑂(𝐥𝐨𝐠 𝑪 , 𝜆)]

• Verifying 𝜋 should be fast [i.e., time(V) = 𝑂(𝑥 , 𝐥𝐨𝐠 𝑪 , 𝜆)]

note: if SNARK is zero-knowledge, then called a zkSNARK

Goal: P wants to show that it knows 𝒘 s.t. 𝐶(𝒙,𝒘) = 1
verifier cannot read 𝐶 !! Instead,

V relies on setup(𝐶) to pre-process (summarize) 𝐶 in Sv

An example
Prover says: I know (𝑥1, … , 𝑥*) ∈ 𝑋 such that 𝐻(𝑥1, … , 𝑥𝑛) = 𝑦

Prover Verifier

statement: 𝑦
witness: 𝑥1, … , 𝑥!

statement: 𝑦

Proof 𝜋 accept or reject

SNARK: size(𝜋) and VerifyTime(𝜋) should be 𝑂(log 𝑛) !!

An example

Prover Verifier

statement: 𝑦
witness: 𝑥1, … , 𝑥!

statement: 𝑦

Proof 𝜋 accept or reject

How is this possible ???

SNARK: size(𝜋) and VerifyTime(𝜋) should be 𝑂(log 𝑛) !!

Types of pre-processing Setup

Recall setup for circuit 𝐶: S(𝐶) ⇾ public parameters (Sp, Sv)

Types of setup:

trusted setup per circuit: S(𝐶) uses data that must be kept secret

compromised trusted setup ⇒ can prove false statements

updatable universal trusted setup: (Sp, Sv) can be updated by anyone

transparent: S() does not use secret data (no trusted setup)

Significant progress in recent years

• Kilian’92, Micali’94: succinct transparent arguments from PCP
• impractical prover time

• GGPR’13, Groth’16, …: linear prover time, constant size proof (𝑂#(1))
• trusted setup per circuit (setup alg. uses secret randomness)

• compromised setup ⇒ proofs of false statements

• Sonic’19, Marlin’19, Plonk’19, … : universal trusted setup

• DARK’19, Halo’19, STARK, … : no trusted setup (transparent)

Types of SNARKs (partial list)

size of
|π|

size of
|Sp|

verifier
time

trusted
setup?

Groth’16 O(1) O(|𝐶|) O(1) yes/per circuit

PLONK/MARLIN O(1) O(|𝐶|) O(1) yes/updatable

Bulletproofs O(log|𝐶|) O(1) O(|𝐶|) no

STARK O(log|𝐶|) O(1) O(log|𝐶|) no

DARK O(log|𝐶|) O(1) O(log|𝐶|) no

⋮ ⋮ ⋮

A typical SNARK software system

DSL
program

Circom,
ZoKrates,

…

compiler

SNARK
friendly
format

R1CS,
AIR,

TurboPlonk

SNARK
backend

x, witness

Proof 𝜋

(Sp, Sv)setup

CPU heavy

verifier

accept/
reject

x

zkSNARK applications

Blockchain Applications
Scalability:

• SNARK Rollup (zkSNARK for privacy from public)

Privacy: Private Tx on a public blockchain
• Confidential transactions
• Zcash

Compliance:
• Proving solvency in zero-knowledge
• Zero-knowledge taxes

Blockchain Applications
Scalability:

• SNARK Rollup (zkSNARK for privacy from public)

Privacy: Private Tx on a public blockchain
• Confidential transactions
• Zcash

Compliance:
• Proving solvency in zero-knowledge
• Zero-knowledge taxes

… but first: commitments

Cryptographic commitment: emulates an envelope

Many applications: e.g., a DAPP for a sealed bid auction

• Every participant commits to its bid,

• Once all bids are in, everyone opens their commitment

data data

Cryptographic Commitments

Syntax: a commitment scheme is two algorithms

• commit(msg, r) ⇾ com

• verify(msg, com, r) ⇾ accept or reject

anyone can verify that commitment was opened correctly

secret randomness in 𝑅 commitment string

Commitments: security properties

• binding: Bob cannot produce two valid openings for com.
Formally: no efficient adversary can produce

com, (m1, r1), (m2, r2)
such that verify(m1, com, r1) = verify(m2, com, r2) = accept

and m1 ≠ m2.

• hiding: com reveals nothing about committed data

commit(m, r) ⇾ com, and r is uniform in 𝑅 (𝑟 ⇽ 𝑅),
then com is statistically independent of m

Confidential Transactions

Confidential Tx (CT)

Goal: hide amounts in Bitcoin transactions.

⇒ businesses cannot use for supply chain payments

will not hide Tx fee

Confidential Tx: how?

Bitcoin Tx today: Google: 30 ⇾ Alice: 1, Google: 29

8 bytes

The plan: replace amounts by commitments to amounts

Google: com1 ⇾ Alice: com2, Google: com3

32 bytes
where com1 = commit(30, r1), com2 = commit(1, r2), com3 = commit(29, r3)

Now blockchain hides amounts

3bd6e25fqd

8c528ad9fa

ae23b452d8

187b6cf54a8

How much was transferred ???

The problem: how will miners verify Tx?

Solution: zkSNARK (special purpose, optimized for this problem)
• Google: (1) privately send r2 to Alice

(2) construct a zkSNARK 𝜋 where statement = x = (com1, com2, com3)
witness = w = (m1, r1, m2, r2, m3, r3)

and circuit 𝐶(x,w) outputs 0 if:
(i) comi = commit(mi, ri) for i=1,2,3,
(ii) m1 = m2 + m3 + TxFees,
(iii) m2 ≥ 0 and m3 ≥ 0

Google: com1 ⇾ Alice: com2, Google: com3

com1 = commit(30, r1), com2 = commit(1, r2), com3 = commit(29, r3)

CT arithmetic
circuit

The problem: how will miners verify Tx?

• Google: (1) privately send r2 to Alice
(2) construct zkSNARK proof 𝜋 that Tx is valid
(3) append 𝜋 to Tx

proof 𝜋 , Google: com1 ⇾ Alice: com2, Google: com3Tx:

• Miners: accept Tx if proof 𝜋 is valid (need fast verification)
⇒ learn Tx is valid, but amounts are hidden

(need short proof! ⇒ zkSNARK)

Zcash (simplified)

Zcash

Goal: fully private payments … like cash, but across the Internet
challenge: will governments allow this ???

Zcash blockchain supports two types of TXOs:

• transparent TXO (as in Bitcoin)

• shielded (anonymized)

a Tx can have both types of inputs, both types of outputs

Addresses and TXOs
H1, H2, H3: cryptographic hash functions.

(1) shielded address: random sk ⇽ X, pk = H1(sk)

(2) shielded TXO (note) owned by address pk:

- TXO owner has (from payer): value v and r ⇽ R

- on blockchain: coin = H2((pk, v) , r) (commit to pk, v)

pk: addr. of owner, v: value of coin, r: random chosen by payer

sk needed to spend TXO
for address pk

The blockchain

coin1

coin2

coin3

⋮

nf1
nf2

⋮

coins nullifiers transparent-TXOs

similar
to Bitcoin
UTXO set

just Merkle root … append only tree
(coins are never removed)

explicit list:
one entry per spent coin

Transactions: an example

owner of coin = H2((pk, v) , r) (Tx input)
wants to send coin funds to: shielded pk’, v’

transp. pk’’, v’’

step 1: construct new coin: coin’ = H2((pk’, v’) , r’)
by choosing random r’ ⇽ R (and sends v’, r’ to owner of pk’)

step 2: compute nullifier for spent coin nf = H3(sk,)
nullifier nf is used to “cancel” coin (no double spends)

key point: miners learn that some coin was spent, but not which one!

(v = v’ + v’’)

index of coin
in Merkle tree

(Tx output)

Transactions: an example
step 3: construct a zkSNARK proof 𝜋 for

statement = x = (current Merkle root, coin’, nf, v’’)

witness = w = (sk, (v, r), (pk’, v’, r’), Merkle proof for coin)
𝐶(x, w) outputs 0 if: with coin := H2((pk=H1(sk), v), r) check

(1) Merkle proof for coin is valid,

(2) coin’ = H2((pk’, v’) , r’)
(3) v = v’ + v’’ and v’ ≥ 0 and v’’ ≥ 0,

(4) nf = H3(sk, index-of-coin-in-Merkle-tree)

The Zcash
circuit

from
Merkle
proof

What is sent to miners

step 4: send (coin’, nf, transparent-TXO, proof 𝜋) to miners,

send (v’ , r’) to owner of pk’

step 5: miners verify
(i) proof 𝜋 and transparent-TXO
(ii) verify that nf is not in nullifier list (prevent double spending)

if so, add coin’ to Merkle tree, add nf to nullifier list,

add transparent-TXO to UTXO set.

Summary

• Tx hides which coin was spent
⇒ coin is never removed from Merkle tree,

but cannot be double spent thanks to nullifer

note: prior to spending coin, only owner knows nf:
nf = H3(sk,)

• Tx hides address of coin’ owner

• Miners can verify Tx is valid, but learn nothing about Tx details.

index of coin
in Merkle tree

END OF LECTURE

