

Proof Systems and SNARKs

Benedikt Bünz, Stanford

Managing assets on a blockchain: key principles

- Universal verifiability of blockchain rules
 - \Rightarrow all data written to the blockchain is public; everyone can verify
 - \Rightarrow added benefit: interoperability between chains

- Assets are **controlled by signature keys**
 - ⇒ assets <u>cannot</u> be transferred without a valid signature (of course, users can choose to custody their keys)

Naïve reasoning:

universal verifiability \Rightarrow blockchain data is public

 \Rightarrow all transactions data is public

otherwise, how we can verify Tx?

not quite ...

crypto magic \Rightarrow private Tx on a publicly verifiable blockchain

Public blockchain & universal verifiability

(abstractly)

public blockchain

- **Tx data**: encrypted (or committed)
- **Proof** π : *zero-knowledge proof* that (reveals nothing about Tx data)
 - (1) plaintext Tx data is consistent with plaintext current state
 - (2) plaintext new state is correct

Public blockchain & universal verifiability

(abstractly)

public blockchain

- **Proof** π : *zero-knowledge proof* that (reveals nothing about Tx data)
 - (1) plaintext Tx data is consistent with plaintext current state
 - (2) plaintext new state is correct

Zero Knowledge Proof Systems

(1) arithmetic circuits

- Fix a finite field $\mathbb{F} = \{0, \dots, p-1\}$ for some prime p>2.
- Arithmetic circuit: $C: \mathbb{F}^n \rightarrow \mathbb{F}$
 - directed acyclic graph (DAG) where
 - internal nodes are labeled +, -, or ×
 - inputs are labeled 1, x_1, \ldots, x_n
 - defines an n-variate polynomial with an evaluation recipe
- |C| = # multiplication gates in C

Boolean circuits as arithmetic circuits

OR(x, y)

 $\frac{x}{0}$

0

1

1

0

1

0

1

Boolean circuits: circuits with AND, OR, NOT gates

Encoding a boolean circuit as an arithmetic circuit over \mathbb{F}_p :

- AND(x, y) encoded as $x \cdot y$
- OR(x, y) encoded as $x + y x \cdot y$
- NOT(x) encoded as 1 x

Interesting arithmetic circuits

• $C_{hash}(h, m)$: outputs 0 if SHA256(m) = h, and \neq 0 otherwise

$$C_{hash}(h, m) = (h - SHA256(m))$$
, $|C_{hash}| \approx 20K$ gates

 C_{sig}((pk, m), σ): output 0 if σ is a valid ECDSA signature of m under pk

(2) non-interactive proof systems (for NP)

Public arithmetic circuit: $C(x, w) \rightarrow \mathbb{F}_p$ public statement in $\mathbb{F}_p^n \longrightarrow \operatorname{secret} witness$ in \mathbb{F}_p^m

- Let $x \in \mathbb{F}_p^n$. Two standard goals for prover P:
- (1) <u>Soundness</u>: convince Verifier that $\exists w$ s.t. C(x, w) = 0(e.g., $\exists w$ such that $[H(w) = x \text{ and } 0 < w < 2^{60}]$)
- (2) <u>Knowledge</u>: convince Verifier that P "knows" w s.t. C(x, w) = 0(e.g., P knows a w such that H(w) = x)

The trivial proof system

Why can't prover simply send w to verifier?

• Verifier checks if C(x, w) = 0 and accepts if so.

Problems with this:

(1) w might be secret: prover cannot reveal w to verifier

(2) w might be long: we want a "short" proof

(3) computing $C(\mathbf{x}, \mathbf{w})$ may be hard: want to minimize Verifier's work

Non-interactive Proof Systems (for NP)

setup: $S(C) \rightarrow$ public parameters (S_p, S_v)

Non-interactive Proof Systems (for NP)

A non-interactive proof system is a triple (S, P, V):

- $S(C) \rightarrow$ public parameters (S_p, S_v) for prover and verifier
- $P(S_p, x, w) \rightarrow \text{proof } \pi$
- $V(S_{v}, x, \pi) \rightarrow \text{accept or reject}$

proof systems: properties (informal)

Prover P(**pp**, **x**, **w**) proof π **Complete:** $\forall x, w: C(x, w) = 0 \Rightarrow V(S_v, x, P(S_p, x, w)) =$ accept

Proof of knowledge: V accepts \Rightarrow P "knows" **w** s.t. $C(\mathbf{x}, \mathbf{w}) = 0$

Zero knowledge (optional): (x, π) "reveals nothing" about w

(b) Zero knowledge

(S, P, V) is **zero knowledge** if proof π "reveals nothing" about w

<u>Formally</u>: (S, P, V) is **zero knowledge** for a circuit *C* if there is an efficient simulator **Sim**, such that for all $x \in \mathbb{F}_p^n$ s.t. $\exists w: C(x, w) = 0$ the distribution:

$$(S_p, S_v, x, \pi)$$
 where $(S_p, S_v) \leftarrow S(C)$, $\pi \leftarrow P(x, w)$

is indistinguishable from the distribution:

$$(S_p, S_v, x, \pi)$$
 where $(S_p, S_v, \pi) \leftarrow Sim(x)$

key point: **Sim**(x) simulates proof π without knowledge of w

(3) Succinct arguments: SNARKs

Goal: P wants to show that it knows w s.t. C(x, w) = 0

note: if SNARK is zero-knowledge, then called a **zkSNARK**

(3) Succinct arguments: SNARKs

Goal: P wants to show that it knows w s.t. C(x, w) = 1verifier cannot read *C* !! Instead, V relies on setup(C) to pre-process (summarize) C in S_v Succinct: • Proof π should be **short** [i.e., $|\pi| = O(\log n)$ Verifying π should be **fast** [i.e., time(V) = $O(|x|, |\log(|C|), \lambda)$]

note: if SNARK is zero-knowledge, then called a **zkSNARK**

An example

Prover says: I know $(x_1, ..., x_n) \in X$ such that $H(x_1, ..., x_n) = y$

SNARK: size(π) and VerifyTime(π) should be $O(\log n)$!!

An example

Types of pre-processing Setup

Recall setup for circuit C: $S(C) \rightarrow \text{public parameters } (S_p, S_v)$

Types of setup:

trusted setup per circuit: S(C) uses data that must be kept secret compromised trusted setup \Rightarrow can prove false statements

updatable universal trusted setup: (S_p, S_v) can be updated by anyone

<u>transparent</u>: **S**() does not use secret data (no trusted setup)

Significant progress in recent years

- Kilian'92, Micali'94: succinct transparent arguments from PCP
 - impractical prover time
- GGPR'13, Groth'16, ...: linear prover time, constant size proof (O_λ(1))
 - trusted setup per circuit (setup alg. uses secret randomness)
 - compromised setup \Rightarrow proofs of false statements
- Sonic'19, Marlin'19, Plonk'19, ...: universal trusted setup
- **DARK'19, Halo'19, STARK**, ... : no trusted setup (transparent)

Types of SNARKs (partial list)

	size of π	size of S _p	verifier time	trusted setup?
Groth'16	O(1)	O(<i>C</i>)	O(1)	yes/per circuit
PLONK/MARLIN	O(1)	O(<i>C</i>)	O(1)	yes/updatable
Bulletproofs	O(log C)	O(1)	O(<i>C</i>)	no
STARK	O(log C)	O(1)	$O(\log C)$	no
DARK	O(log C)	O(1)	O(log <i>C</i>)	no
•	•			•

•

.

A typical SNARK software system

zkSNARK applications

Blockchain Applications

Scalability:

• SNARK Rollup (zkSNARK for privacy from public)

Privacy: Private Tx on a public blockchain

- Confidential transactions
- Zcash

Compliance:

- Proving solvency in zero-knowledge
- Zero-knowledge taxes

Blockchain Applications

Scalability:

• SNARK Rollup (zkSNARK for privacy from public)

Privacy: Private Tx on a public blockchain

- Confidential transactions
- Zcash

Compliance:

- Proving solvency in zero-knowledge
- Zero-knowledge taxes

... but first: commitments

Cryptographic commitment: emulates an envelope

Many applications: e.g., a DAPP for a sealed bid auction

- Every participant commits to its bid,
- Once all bids are in, everyone opens their commitment

Cryptographic Commitments

Syntax: a commitment scheme is two algorithms

• <u>verify</u>(*msg*, *com*, *r*) → accept or reject

anyone can verify that commitment was opened correctly

Commitments: security properties

- **binding**: Bob cannot produce two valid openings for **com**. Formally: no efficient adversary can produce **com**, (m_1, r_1) , (m_2, r_2) such that verify $(m_1, com, r_1) = verify(m_2, com, r_2) = accept$ $and <math>m_1 \neq m_2$.
- <u>hiding</u>: *com* reveals nothing about committed data $\operatorname{commit}(m, r) \rightarrow com$, and *r* is uniform in $R \quad (r \leftarrow R)$, then *com* is statistically independent of *m*

Confidential Transactions

Confidential Tx (CT)

Goal: hide amounts in Bitcoin transactions.

⇒ businesses cannot use for supply chain payments

Confidential Tx: how?

The plan: replace amounts by commitments to amounts

Now blockchain hides amounts

How much was transferred ???

The problem: how will miners verify Tx?

Google: $com_1 \rightarrow Alice: com_2$, Google: com_3

 $com_1 = commit(30, r_1), com_2 = commit(1, r_2), com_3 = commit(29, r_3)$

<u>Solution: zkSNARK</u> (special purpose, optimized for this problem)

• Google: (1) privately send r_2 to Alice (2) construct a zkSNARK π where statement = x = (com₁, com₂, com₃) witness = w = (m₁, r₁, m₂, r₂, m₃, r₃) and circuit C(x,w) outputs 0 if: (i) com_i = commit(m_i, r_i) for i=1,2,3, (ii) m₁ = m₂ + m₃ + TxFees, (iii) m₂ ≥ 0 and m₃ ≥ 0

The problem: how will miners verify Tx?

- Google: (1) privately send r₂ to Alice
 - (2) construct zkSNARK proof π that Tx is valid

(3) append π to Tx (need short proof! \Rightarrow zkSNARK)

Tx: proof π , Google: **com**₁ \rightarrow Alice: **com**₂, Google: **com**₃

Miners: accept Tx if proof π is valid (need fast verification)
 ⇒ learn Tx is valid, but amounts are hidden

Zcash (simplified)

Zcash

Goal: fully private payments ... like cash, but across the Internet challenge: will governments allow this ???

Zcash blockchain supports two types of TXOs:

- transparent TXO (as in Bitcoin)
- shielded (anonymized)

a Tx can have both types of inputs, both types of outputs

Addresses and TXOs

 H_1 , H_2 , H_3 : cryptographic hash functions.

sk needed to spend TXO for address pk

(1) shielded address: random $sk \leftarrow X$, $pk = H_1(sk)$

(2) **shielded TXO** (note) owned by address pk:

- TXO owner has (from payer): value v and r ← R

- on blockchain: $coin = H_2((pk, v), r)$

(commit to pk, v)

pk: addr. of owner, v: value of coin, r: random chosen by payer

The blockchain

owner of $coin = H_2((pk, v), r)$	(Tx input)			
wants to send coin funds to:	shielded	pk', v'		
(v = v' + v'')	transp.	pk'', v''	(ix output)	

step 1: construct new coin: coin' = H₂((pk', v'), r')
by choosing random r' ← R (and sends v', r' to owner of pk')
step 2: compute nullifier for spent coin nf = H₃(sk, index of coin)
nullifier nf is used to "cancel" coin (no double spends)

key point: miners learn that some coin was spent, but not which one!

Transactions: an example

<u>step 3</u>: construct a zkSNARK proof π for

statement = x = (current Merkle root, coin', nf, v'')witness = w = (sk, (v, r), (pk', v', r'), Merkle proof for coin)

 $C(x, w) \text{ outputs 0 if: with coin := } H_2((pk=H_1(sk), v), r) \text{ check}$ (1) Merkle proof for coin is valid, $(2) \text{ coin'} = H_2((pk', v'), r')$ $(3) v = v' + v'' \text{ and } v' \ge 0 \text{ and } v'' \ge 0,$ $(4) \text{ nf} = H_3(sk, \text{ index-of-coin-in-Merkle-tree})$

What is sent to miners

<u>step 4</u>: send (**coin'**, **nf**, transparent-TXO, proof π) to miners,

send (v', r') to owner of pk'

step 5: miners verify

- (i) proof π and transparent-TXO
- (ii) verify that **nf** is not in nullifier list (prevent double spending)
- if so, add **coin'** to Merkle tree, add **nf** to nullifier list, add transparent-TXO to UTXO set.

Summary

- Tx hides which coin was spent
 - ⇒ coin is never removed from Merkle tree, but cannot be double spent thanks to nullifer

note: prior to spending **coin**, only owner knows **nf**: $\mathbf{nf} = H_3(\mathbf{Sk}, \operatorname{index of coin}_{in Merkle tree})$

- Tx hides address of **coin'** owner
- Miners can verify Tx is valid, but learn nothing about Tx details.

END OF LECTURE